Nonlinear Behaviors in Gene Therapy
Theoretical and experimental aspects
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Gene therapy represents a promising method for treating genetic disorders or diseases
consisting in the transfer of genetic material (DNA) to cells in order to substitute or to
slow down the evolution of the defective gene in cells. Theoretical models to predict
DNA release are difficult to build in the classical approach of continuous and
differentiable physical quantities, due to the high number of interdependent phenomena
that occur simultaneous. The article presents a theoretical model based on the fractal
theory of motions in the form of Scale Relativity Theory to describe nonlinear behaviors
in gene therapy. Correlations of the theoretical model with experimental data are also

observed.
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The determinism does not necessarily imply either
regular behavior (periodic movements, autostructures,
etc.) or predictability in the behavior of polymeric systems.
In the linear analysis, on which the standard physics of
polymers is based almost exclusively, the unlimited
predictability was an automatic quality of polymeric system
dynamics. The development of nonlinear analysis and the
discovery of laws governing chaos has demonstrated not
only that the reductive analysis method, to which the
polymer physics has been limited so far, has limited
applicability, but also that unlimited predictability is not an
attribute of polymer systems, representing, in fact, a natural
consequence of their simplification by linear approach.
There are only few behaviors in which non-linearity and
chaos highlight common manifestations (the
superstructure, the glass transition, the flammability, etc.),
namely an universality in the laws that dictate dynamics in
polymeric systems [1-3].

The behavior of the polymers is determined by the
conditions of polymers production [4-7] and by the
conditions in which they are used [8]. The nonlinearity and
chaoticity of any polymeric system are both structural and
functional, the interactions between its structural units
determining mutual microscopic-macroscopic, local-
global, individually-collectively conditionalities. In such a
framework, the universality of the dynamic laws of the
polymeric systems becomes natural, obvious and have to
be reflected in the mathematical procedures used. Some
authors are increasingly discussing about holographic

implementations in describing the dynamics of polymer
systems (fractal paradigm of the nature) [9].

The usual physical models used in describing the
dynamics of the polymeric systems are based on the
assumption, otherwise still unjustified, of the
differentiability of the physical quantities used to describe
their evolution [1, 3]. The success of these models have to
be understood gradually / sequentially, in areas where
differentiability and integrability are still valid. The
differentiable and integrable mathematical procedures
fails when we intend to describe evolutions, since only
nonlinearity and chaoticity involve them.

In order to describe evolutions, however remaining
tributary to differentiable and integrable mathematical
procedures, it is necessary to explicitly introduce the scale
resolution in the expressions of the physical variables that
describe evolutions and implicitly in the expressions of the
fundamental equations that govern them [10].

This means that any physical variable, dependent in the
classic way, both on the spatial and time coordinates,
depends, in the new mathematical structure, on the scale
resolution. In other words, for example, instead of operating
with a single physical variable, described by a strictly non-
differentiable mathematical function, we will only work
with approximations of this mathematical function
obtained by mediating it at different scale resolutions.
Consequently, any physical variable used to describe
dynamics in polymeric systems will function as the limit

* email: bsimona77@yahoo.com, simonavolovat@gmail.com

340 http://www.revmaterial eplastice.ro

All the authors have equal contribution at this original article.

MATERIALE PLASTICE ¢ 55¢ No. 3 ¢ 2018



of a family of mathematical functions, non-differentiable
for a null scale resolution and differentiable for a nonzero
scale resolution [11, 12].

This way of describing the dynamics of polymeric
systems, for which measurements are performed at finite-
scale resolutions, obviously implies the development of
both new geometric structures and physical theories,
compliant with these geometric structures, for which the
motion laws, invariant to spatial and temporal
transformation, are also invariant at scale resolution
transformations. In our opinion, such a geometric structure
can be one based on the concept of fractal and the
corresponding physical model, described in the Theory of
Scale Relativity [11, 12].

From such a perspective, holographic implementations
in describing the dynamics of polymeric systems are
explained by the movements of polymer structural units
on continuous, but non-differentiable curves (fractal
curves) [2, 3, 11].

Several consequences are obvious: i) constrained
movements on continuous and differentiable curvesin an
Euclidean space are substituted with movements free of
any constraints on continuous, but nondifferentiable curves
in a fractal space; ii) the motion curves acts both as the
geodesics of a fractal space and as the current lines of a
fractal fluid; iii) the structural units of any polymeric system
are substituted with their own geodesic, any external
constraint being interpreted as a selection of geodesics
based on local-global/entire-part compatibility, etc.; iv) for
time scales larger with respect to the inverse of the highest
Lyapunov exponent [13, 14], deterministic trajectories can
be replaced by families of potential trajectories and the
concept of defined positions by that of probability densities.

In such conjecture, a holographic implementation,
describing nonlinear behaviors in gene therapy, using the
Scale Relativity Theory [11, 12], are presented. Moreover,
correlations of the theoretical model with experimental
data in DNA release are, also, analyzed.

Experimental part

In order to treat genetic disorders or
diseases [15, 16], gene therapy represents a
promising method; it consist in the transfer of
genetic material (DNA) to cells in order to
substitute or to slow down the evolution of the
defective gene in cells. Gene therapy can be
done by the so-called vectors, virals or non-
virals, able to compress the nucleic acid, at least
up to the limit of the biological barriers. More
and more, the non-viral vectors are preferred
against viral ones due to: i) their ability to be
laboratory synthesized in a multitude of entities
with reproducible structural characteristics and
functional behaviors; ii) their convenient use in
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transfection protocols; iii) they produce a
minimized immunologic response.

The experiments aimed to obtain double
stranded DNA (dsDNA) carriers with high
transfection efficiency and no acute toxicity.
Among the synthetic polymers envisaged for the
design of non-viral vector, sterically exposed
polycations proved to be good reversible transporters for
dsDNAs [17-24]. From these, although cytotoxic,
polyethyleneimines (PEI) with low-to-medium molecular
weight (5 to 25 kDa) was considered an acceptable option
for packing and dsDNA transport.

On the other hand, the design of hybrid nanoplatforms
was envisaged due to their functions: multivalent dsDNA
binding sites, membrane penetration and anti-opsonisation
function. For this, C60 fullerene was chosen due to its
nanometric core and its promising biomedical applications
[17]. Inthis context, C60 fullerene-polyethyleneimine (C60-
PEI) nanoconjugates, in which hyperbranched low
molecular weight PEI (2 kDa) organizes around
hydrophobic C60, like a dendrimer-like core structure, were
synthesized as dsDNA carriers, following the procedure
from [17]. Having in view the use of these vectors in the
development of a gene-activated scaffold platform, C60-
PEI labeling via 5-fluorescein isothiocyanate (C60-PEI-
FITC) was performed [24].

Since matrix mediated gene transfer strategy is
considered to enhance gene delivery, increase the extent
and duration of transgene expression and insure a safe
profile for gene therapy, the polyplexes formed between
C60-PEI conjugates as gene delivery vector and salmon
dsDNA were excapsulated in a 3-D matrix, a bioinspired
hybrid cryogel, containing natural/synthetic polymers
(atelocollagen, hyaluronic acid derivative, poly(a-
caprolactone)), and polyethylenimine functionalized nano-
hydroxyapatite (CH10P10/HAp25-15).

For a nitrogen to phosphorus ratio N/P=10, further studies
were conducted by examining free dsDNA and vector
release from the matrix systems by means of UV-VIS (for
C60-PEl/salmon dsDNA) and fluorescent spectro-
photometry (for labeled carrier C60-PEI-FITC/salmon
dsDNA). The experiments were performed for 72 days
(1749 h) in dynamic conditions: on a temperature
controlled shaker at 37°C, 200 rpm, similar to physiological
conditions.

Results and discussions

As shown in figure 1, an initial burst of dsDNA release is
evident for all investigated systems, mostly in the first 2h
with an increased effect in the dynamic system. However,
even the released naked dsDNA amount with respect to
the initial dsDNA (33.6 wt%) is lower than that reported for
combined systems comprising dsDNA vector in a 3D
matrix, where it was situated between 60 and 80%.

70 =4—free salmon dsDNA
60 - =B-C60-PEL/ salmon dsDNA
5o - C60-PEI-FITC/salmon dsDNA

Fig. 1. The release of free salmon dsDNA and
salmon dsDNA delivery vector from 3D
polymeric matrix
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For all kinetic plots, an important slope change is observed in the 0-100 h time interval, and a plateau is reached after
about 700 h when the majority of the still existing conjugates appear to remain associated to the scaffold. These aspects
are directly related to the matrix degradation behavior.

Theoretical considerations

Taking into account the above mentioned, next we will work in the dynamics of the polymeric systems with probability
density P invariant fractal variable both in relation to the spatial and time coordinates, as well as with the scale resolution.
In other words, fractalization through the stochasticity x=x(t) will be described by the probability density p, functional
both on x and on t in the form P=P(x,t). The evolution of this probability density satisfies a Fokker-Planck fractal equation
which in the unidimesional case is written [5, 6]:

AP(x2)+ AV, Pl )] Alde)* > 8_[Plx ) =0 @)

where V_is the velocity of the fractal probability current density, A is the coefficient associated to the fractal-non-fractal
transition, dt is the scale resolution and D_ is the fractal dimension of the trajectories [13, 14]. Equation (1) admits
analytical solutions only in very special situations. For example, for V. =-nx with n = cont., the result of the integration for

equation (1) is the function [23, 24]:
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with x =cont. Using the substitutions, adimensional variables:

the relation (2) becomes:
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The fact that p simultaneously operates on two
manifolds, one of the spatial coordinates and time and the
other of the scale resolutions, allow us to perform various
isometries such as immersing between these two
manifolds, size compactification [2, 14]. In this context,
any variable that will describe the dynamics of a polymeric
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system will be defined as a product between its average
value at various scale resolutions and the probability density
constructed by adequate isometry. Such formalism has
been applied in the study of the physical systems dynamics
both at microscale [25-27], mesoscale [28, 29] and
macroscale [30, 31].

Fig. 2. The dependence of probability
density on time and on spatial scale
resolution: a) three dimensional
dependence; b) contour plot;
c¢) dependence of probability density
on time for three distinct values of the
spatial scale resolution & =14, &,=1.7,
&,=0.6 relative to the the
reference value § =1
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For example, we present in figure 2a-c an isometry type
obtained by immersing the spatial coordinates manifold
in that of the spatial scale resolutions manifold. From such
aperspective, figure 2a correspondsto the 3D dependence
of the probability density on time and on the spatial scale
resolution, figure 2b contour plot, while in figure 2c the
dependence of probability density on time for three distinct
values of the spatial scale resolution relative to the its
reference value.

The comparison of figures 1 and 2c shows a high degree
of similarity between the two, suggesting that the
theoretical model can describe, at least qualitatively, the
evolution of dsSDNA release from the given systems. In such
aframe, the product of the average value of dsDNA released
at different scale resolutions and the probability density
describes the time evolution of the release process.

Let’s note that at the initial moment there is a global
scale of phenomena and so the average value will be
identified with the initial value.

Conclusions

Nonlinear behaviors in gene therapy by means of a
holographic implementation using the fractal model of
motion in the form of Scale Relativity Theory are presented.
So, through a Fokker-Planck fractal equation, various
isometries between the spatio-temporal coordinates
manifold and scale resolutions manifold can describe
different nonlinear dynamics and, implicitly, nonlinear
behaviors in the transfer of genetic material (DNA) to cells,
i.e. on gene therapy. In such context, correlations of the
theoretical model with experimental data in data release
(more precisely, the release of free salmon dsDNA and
salmon dsDNA delivery vector from 3D polymeric matrix)
are analyzed.
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